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Abstract-This paper gives the governing equations and natural boundary conditions for the
stability of multilayered sandwich-type rectangular flat plates with orthotropic (constrUl:tionally
orthotropic) hard and transversally isotropic soft layers. It shows the solution of these equations
and the problem of initial postbuckling behaviour for the regularly multilayered plales with Navicr·
type boundary conditions.

I. INTRODUCTION

The theories and analyses for the solution of different problems of multilayered media
(including beams, plates and shells) depend on the objectives of the investigations. The
actual layouts. the material characteristics. the loading and boundary conditions determine
which of either theories or models shall be or may be used. These investigations in general
must be considered as a three-dimensionai problem. but -depending on the characteristic
wave lengths, belonging to the "changing" of the strain/stress state of the multilayered
media/construction -major emphasis has been concentrated on the approach solutions.
Examples of the characteristic theories and models are given in all the references cited.

The sandwich-type constructions (beams. plates. shells) can be characterized by the
very different material characteristics of the neighbouring layers. In such constructions
the "hard" layers are usually modelled as thin plates/shells obeying the Kirchhoff-Love
hypothesis. and for the "soft" layers the antiplane shear strains and stresses are charac
teristic, while the model of "transversally soft" layers also includes the cl1'ects of the
antiplane normal deformations (Bolotin, 1965a.b).

Using the Bolotin's model and the results of Pomazi and Moskalenko (1967) the
stability and initial postbuckling behaviour of the regularly multilayered plates with ortho
tropic hard and transversally isotropic soft layers have been investigated by the author
(Pomazi. 1966. 1978, 1982).

The present report gives a review of the formulation of the mechanical/mathematical
models of the stability and initial postbuckling behaviour of multilayered sandwich-type
plates with orthotropic (possibly constructionally orthotropic) hard and transversally iso
tropic soft layers. The corresponding governing equations and boundary conditions arc
derived and the formulation of the problem of initial postbuckling behaviour of the plate
are given. The formulated equations and tasks-as examples-arc shown for the regularly
multilayered rectangular plate with Navier-type boundary conditions.

2. HARD AND SOFT LAYERS: MATERtAL LAWS

Let us consider a rectangular multilayered sandwich-type flat plate of side Icngths a
and b lying in the 0 ~ x ~ a. 0 ~ y ~ b domain of Descartes' system of coordinates.
composd of n "hard" and (n - I) "transversally soft" layers. Let us notc the hard layers
beginning from the middle layer of the plate as follows:

'A' 29: 14/15-9 1969



1970 L. POMAZI

a= -m

N°,
Fig. I. The construction ;lJld loading of the platc',

ex = ± I. ± 3 , m if" is even,

(X = O. ± 2. ±4, ±m if" is odd.

Here in both cases m = n - I. and ~(X = 2 is the labelling's difference. The (X soft layers
occur between the (X and «(X+~(X) hard layers. Let the plate be loaded on the edges only, so
that in each hard layer the membr.tne forces N:, N~, and N:" are operating (Fig. I).

It is supposed that the deformation and stress state of the plate can be described by
the Cauchy deformation tensor. and that the material of the layers is clastic and orthotropic;
thus Hooke's law is valid. Based on Bolotin's (1965) investigations the common assumptions
from the three-layered sandwich plate theory-in addition to the eflccts of the Poisson
ratios in the soft layers, which could be significant in the task of the stability (Pomazi and
Moskalenko. 1967)-are taken into consideration.

In the frame of these assumptions for the hard layers the Kirchhoff-Love Law is valid,
but in the transversally soft layers the antiplane deformations (i,:, 1' ..:,1;:> and stresses are
characteristic and constant across the thickness of these layers.

With x == I. y == 2. === 3 being the axes of orthotropy, using the common symbols for
the material characteristics and deformation/stress tensor components, and based on the
above assumptions. the inverse Hooke's Law for the transversally isotropic materials of
the layers is in the form:

where for the hard layers:

(J = 8'1: ( I)

and for the soft layers:

E.
h" = - ... v'



Here:
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These assumptions also mean that the expressions of the deformation energy densities
for the hard and transversally soft layers-missing the second order terms-have the
forms:

dU= ~(O',f,+O' ..f,.+fH'\")'

dU = !(f,:}\:+f,.:,\:+O':(). (2)

Here the term a:( corresponds to the effect of antiplane tension/compression of the trans
versally soft layer. If this term is negligibly small compared with the others. then the layer
is named as simply "soft". More sophisticated analysis of the characters of the layers
based on the deformation energy function -is given by Bolotin (1965) and Pomazi and
Moskalenko (1967).

3. GENERALIZED CONSTITUTIVE EQUATIONS

[n real multilayered sandwich-type constructions the "hard" layers could have
reinforcements or they could be reinforced by foldings or otherwise, and the "soft.. layers
play the role of fillers (cores) between the hard layers. [n these cases the constitutive
equations for the layers should be "generalized" by "smoothing" of the stiffness charac
teristics by the thickness of the layer using the suppositions according to the strain/stress
liekl of thesc layers. This method was used. for example, in the task ofstability ofa sandwich
plate with bent hard f.lces (pomilzi, 19l\0. 1990).

Using the common definitions and_symbols for the internal membrane forces and
moments. based on the v'llidity of the Kirchhoff··Love Law. after integration of Hooke's
law or from the equivalence of deformation energy of the stilfened (bent) and flat layer
with uniform thickness of h•• for each hard layer as orthotropic plate the equivalent stitfness
characteristics and the generalized Hooke's Law -connecting the internal forces and strains
in the middle plane of the hard layer-can be determind in the form:

[N] [C K][C]
fl.[=~q ~.

Here:

are the vectors of membrane forces. internal moments. strains and curvatures;

Ck. h", D,k

arc the stiffness characteristics; and the stiffness matrices have the forms:

(3)

[COO C I2

o ] roo
K I2

o ] [D"
D I2

o ]
~= ~12 C22 o . is = :12 K22 o . 12 = ~12 D 22 o .

0 Chh 0 Kbb 0 D bb

The matrix is characterizes the coupling effect between stretching and bending. which
is significant for the constructionally orthotropic plates.
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Corresponding to the assumptions for the stresses and deformations in the soft layers.
which were assumed to be constant along the layers. for the generalized constitutive equation
of the transl'ersalZI' soft layers with uniform thickness s we have:

(4)

where the stiffness characteristics are:

Here:

G E.
B== R==-

s s

where G,lOd E: are the average of the shear and the Young's moduli in normal direction
to the plate of the soft layer.

·t STRAIN AND STRESS FIELDS. DEFORMATION ENERGY DENSITIES

The Illedlanical modd of the multilayered sandwich-type plate built up in the previous
section is continuous by the.. in-plane coordinates x. y and discrete by the coordinate ::,
perpendicular to the plate (by ~), The displacements in the hard layers arc determined by
the Kirchholr Love Law: in the soft layers ._. based on the suppositions they arc linear
functions of the local coordinate. perpendicular to the plate (but the normal to the middle
surface of the layer docs not remain normal after the deformation) and they can be expressed
by the displacements of adjacent hard layers,

So, the str'lin and stress state of the plate will be determined if the displacements of
the points belonging to the middle planes of the hard layers ··-altogether 31/ functions:
/1,(.1:• .1').1',(.1:•.1').11',(.1:•.1') will be known (Fig. 2).

Using the character of linearity of displacement functions by the local coordinates. the
displacement fields of hard and soft layers can be built up. From this the strain anti eurvatur..:
vector components will have forms as follows:

jiJr the hard layers :

Fig. 2. Displacements of the layer,.



fur the soft layers:

where
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t
l~ = -(w,+,1,-w,)

S2

r~ = ~(h, +s,), r; = ~(h2+~2 +s,).

1973

(6)

We can obtain the stress fields of the hard and soft layers with these strain vector components
by using the corresponding constitutive equations.

With integration of the deformation energy densities for unit volume given by formulas
(::!) and using the generalized constitutive equations for the deformation energy densities for
"!lit surface of the hard and suft layers we find:

or in a more detailed form:

n, = HCllr.;+2CI~I:,I:y+C22I:;+C6l.y~

+ 2[K 11 /:,K, + KI2 (I:x KI'+£yK,) + K22 1:,,K,.]

+4K()oYX+Dill(; +2DI~K.<Ky+ D~21(; +4Dt•oX2
:"

II. = !s;[8(Y;:+f;:)+RE;].

(7)

(8)

The density for unit surl~lce of the potenti<ll energy ofexternal forces in the case of the
stability problem (linear task) has the same form as for an ordinary plate:

(9)

5. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS OF THE STABILITY
PROBLEM

For the mathematical formulation of the stability problem of the multilayered plate
as a conservative mechanical system the TrelTtz variational principle [i5(i5~ Vo) = OJ can be
used. where in this case i5~ Vo = I: the total potential energy of the system written for the
state with small disturbances. So, we can get the governing equations and boundary
conditions as Euler-Lagrange equations and natural boundary conditions corresponding
to the variational principle:

(10)

where
m m-t.:r

1= L (O-L)+ L V
:t __ m I;I .. -m

is the total potential energy of the plate and

(It)
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ex = ffIixdx dy. ex = fffix dx dy. Lx = ffnLx dx dy.

Here the integration has to be extended for the surface of the plate characterized by
the half wave lengths i.x • i" in the state of instabilitv.

After rigorous calculations for the governing equations for the stability of a mul
tilayered sandwich-type rectangular flat plate with (constructionally) orthotropic hard
layers. we have:

(12)

where the operators are as follows:

V~I = C~I( ).u+C~(,( ).n.

V:~ = C~~( ).n + C~.(,( l.n.

and 7;:. i\~: hav~ th~ forms of ~qns (6).

The natural boundary ~onditions- on lhe boundary x = const. --arc:

The meaning of the first three conditions is obvious and is well known from the thin
plate theory, while the fourth condition states that th~ generalized transverse shear edge
forces on the free boundary must be zero.

Taking into consideration that the facing layers of the plate are hard layers. the
corresponding equations for these layers can be taken from eqns (12), replacing zero value
for material characteristics of adjacent soft layers, i.e. :

at :x = In: IJ", = R", = 0,

at :X=-I1I: B_", ..~>=R_nr_,\x=O. ( 14)

These equations in some cases (for example in the tasks for regularly multilayered
plates) play the role of "boundary conditions" perpendicular to the plate direction.

The actual solution of the governing equations (12) shall be obtained with the prevailing
boundary conditions. As it is well known from the stability theory of plates, Fourier's
method can reasonably be applied to solve the problem of eigenvalue so arisen, provided
at least two opposite boundaries are "simply supported" and the plates are only in com
pression, i.e. N~" = O. In cases other than this, whether of more sophisticated boundary
conditions or when the plate is also subjected to shear (N:x #- 0), other approximations
shall be applied. In such cases: it is reasonable to prefer some direct variational method
based on expressions (8) and (9) to the solution of eqns (12).
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6. INITIAL POSTBUCKLING BEHAVIOUR OF THE PLATE

To investigate the postbuckling behaviour of the multilayered sandwich-type plate for
the hard layers the Karman-Timoshenko assumptions and boundary conditions can be
used, namely:

(i) the initial postbuckling behaviour of the plate is developed in the instability form;
(ii) the edges of the plate have forms characterized by the linear solution and the

opposite edges of the layers can move one to the other; e~, e.~ are the average relative
approaches of the opposite edges of the layers;

(iii) the shear stresses on the edges of the hard layers are zero-at least in integral
sense;

(iv) the ratio of normal membrane forces n. = N~/N~ remains constant in the post
buckling state of the plate and equal to the ratio n. before buckling;

(v)the normal displacements are comparable to the thickness ofanisotropic hard layers.

On the basis of these assumptions the strain tensor components for the hard layers
should be taken in nonlinear form; thus for the components of the strain vector we have:

y' = II J.y + l'' ..X + IV••.x W•..., (15)

but thc curvature vector rem.tins in the form of eqn (5) as in the linear task. The strain
tensor components for the soft layer remain linear.

The generalized constitutive equations for hard and soft layers also remain the same
as in linear task in the form eqns (3) and (4).

The energy densities for the hard and soft layers remain in the form eqns (7) and (8),
but the density of the work of external forces should be taken in the form:

(16)

At the stability problem of compressed plate NT" =0, but in the postbuckling state
No = 0 in integral sense; thus the work of the shear membrane forces should be taken into
account in eqn (16).

The solution of the nonlinear problem satisfying the conditions expressing loading and
stretching of the edges must now be taken in the forms:

(17)

Here II~, l·:. w: are the solutions of the linear stability problem characterizing the
displacement field in the moment of instability and J is the deflection amplitude parameter
in the postbuckling state of the plate.

The deflection parameter could be determined, for example, by the Ritz direct vari
ational method. By this method instead of the variational problem (10) the total energy of
the system could have a minimum, i.e.:

OJ
of = 0, (18)

where the total energy of the plate should be calculated by eqn (II) using the nonlinear
strain tensor components (15), and eqn (16) for the work of external loads.

From this condition for the deflection parameter f we get a second-order algebraic
equation, from which we can determine the actual value of deflection parameters as a
function of the system parameters and overloading parameter
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S',
m ="'.',v"

H-:re S, and S':" are the actual and critical average values. respectively. of external normal
flJrces.

With this parameter f finally we find the solution of the nonlinear initial postbuckling
behaviour problem of the orthotropic sandwich plate in the form of eqn (17).

The recommended method gives us the possibility of analysing the stresses in the hard
and soft layers and also the amplitude and wave length of bending. depending on the
overload parameter. on the different system parameters and on the different values of e:.

I, EXAMPLES: STABILITY AND INITIAL POSTBUCKLING BEHAVIOUR OF REGULARLY
MULTlLAYERED PLATES

(a) As an example for the solution of the governing equations (12) we may show some
results of the investigations of the stability of a regularly multilayered plate based on the
rapers of Pom;lli (1966. 1978).

In the investigation of the stability of a regularly multilayered rectangular plate. all
the materiaL measurement and loading parameters do not depend on ~. Let us suppose
that on the houndary of the layers Navier-type conditions arc valid and each hard layer is
hladed with constant N" N" membrane forces only (N". 0). In this case E. I~, hand C,
e;, s arc the parallleters of thl.: hard and soft layers, respl.:ctivcly. and the nonzl.:ro stiffness
charach:ristics an.::

Eli I

f)11=f),,=/)= ,
.. 12(I-v')

I?
R = .

s

E' I-v

S 1-1'-21',,1'"
r == h+s.

'fhl.' Navier-typl.: boundary conditions will be satisfil.:d if. using the Fourier method.
thl.: unknown displacl.'llll.:nt fUOl.:tions are taken in doubk Fourier series with amplitu(!I.'
functions V,. /'" IV, and wave numbers k, =Plnjll = njl.,. k 2=P2njh = rell", where Pl.
P2 arl.' whole numbers and I". 1'1' are the half wave length in the x. y directions at the bending
of the hard IaYl.:rs.

Substituting thl.: trial solution functions into the governing equation and into the
equations corresponding to the wnditions in egn (14) we get a sixth-order set of ordinary
ditl'l.:rence equations for the functions V,. V" IV,. with the corresponding boundary
conditions,

Looking for these functions in th..: forms:

V, = V e~'. V, = Vel". rv, = ~V 1.'1" ( 19)

whl.:re U. 1', IV arc certain constants and Jt is the characteristic exponent, we can formulate
the cigenvaluc problem for thc loading parameter

(20)

and the corresponding characteristic and frequency equations have general forms:

f-kre'; = cosh (t. (t = Jtt.'1.. II are the system parameters and ± rt ,(j = 1,2) can be determined
as the main valul.:s of the complex function j1 = Areacosh ~ on the intervallum
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The simultaneous solution (by iteration) of the characteristic and frequency equations
give a set of critical values of loading parameter qk as a spectrum of eigenvalues of the
boundary problem. It was shown that the number of eigenvalues depends on the form of
instability and also on the number of hard layers. and we have:

Instability forms Number of eigenvalues = n

antisymmetrical

symmetrical

n:

n+1 n

2 2

n-I n

2 2

even odd

From the 11 eigenvalues 11- I are in the intervallum

i/u < qk < '1.\ (k = I. .. .. 11-1)

where qu = min/f(';) ami (!.\ = max q(~). determined from the characteristic equation at
- I ~ ~ ~ I. and the critic~tl value /fM in every case is smaller than quo

Using the critical value of characteristic exponents fi; = Ili(/f\l), the relative value
of half wave length in the perpendicular direction to the plate can be introduced by the
formula :

•• _ 1t
I .. -. .. mlllljiil

(21 )

This half wave length characterizes the plate's fields in the moment of instability in the
perpendicular direction to the pbte. When ).~« n, then the instability form has local
ChartlCler, while if ;.~ » II, then it h~IS glohal cllartlcler.

The solution in the first case slightly, but in the second case hardly depends on the
number of klyers.

To illustmte this the stability of a sandwich-type plate with 11 = 5 hard layers was inves
tigated. To get u characterized picture of the forms of instability, for the material charac
teristics of soft layers, very small values were chosen.

Figun: 3 shows the shapes of the critical load function of the h~lrd layers versus the
relative half wave length ;.,1". If the length of the plate a < ;.~, then the form of instability
is .t/lohal. but if a > i.~ then it has loml character. Of course, to these cases thc inequalities
;.~ » 11 or i.i« II also correspond.

(b) As an example for the initial postbuckling problem we may show the results of the
investigations of the initial postbuckling behaviour of the regularly multibyered plate.
based on Pomilzi (1978, 1982).

In this case the solution of the stability problem has to be taken in real form. Using
this form for the displacement functions satisfying the Navier-type bound'lry conditions we
have:

II, =/X,k,cosk,xsink2y-e,x,

(', = /X,k 2 sin k,x cos k 2y-e.y,

W, = / Y, sin k IX sin k1y. (22)
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Here

where

Fig. 3 The shapes of the criticallO;lds versus the half wave lengths.

X, = X,+M'X~

Y, = Y 1 +Jf' Y~,

YI = Re (hi) + 1m (hi)

(23)

at symrnctrit: instability

X,(x) = cosh fl, x,

y,(x) = sinh fll:t.

at antisymmetric instability

X,(l) = sinh fl,l,

J',(x) = cosh II,(J.,

and

A! =

where

Here all wave numbers fl, belong to the critical state of the plate (to the critical load
parameter q.\/) and ii, = fl, til, r = s+ II and Po is the parameter of the system:

Using Ritz's method the relationship is obtained between the hard layer's deflection
parameter and the plate-end shortening for each hard layer of the rectangular plate with
Navier's type boundary conditions. Numerical analysis shows the characteristic effect of
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Fig. 4. Developing of the deflection parameters versus the overloading.
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Fig. 5. The tot;11 energy and the Jel1ection parameter's functions versus the compressive loau.

the antiplane normul strain on the "local" and"global" instability forms and the developing
of these in the postbuckling state.

For each hurd Iuyer we get u different vulue of the deflection parameter w./h, depending
on the system parameters, the churucter of instability (local or globul) and the form of
instability (symmetric or antisymmetric).

Figure 4 shows the shapes of deflection of the parameter's function for different hard
layers in layered plates with n = 3 and n = 4 hard layers at antisymmetrical forms of
instabiity. It cun be seen that the character of instability is local because each neighbouring
hard layer is deflected to the opposite side.

For a plate with n = 7 hard layers Fig. 5 shows the curves of the deflection parameters
and the corresponding total energy functions versus the compressive load P... acting on the
hard layers. Visibly the minimum of total energy belongs to different modes (to different
wave lengths ,to') and therefore only these modes could be realized -which shows the
possibility of moele jumping in the postbuckling state of the plate.

8. CONCLUDING REMARKS

The given governing equations and the results of the analytical and approximate
solutions for the stability and initial postbuckling behaviour of multilayered sandwich-type
plates can be used as a "control task" in the investigations of the stability of layered
composites.
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